A combined unifrontal/multifrontal method for unsymmetric sparse matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A two-level sparse approximate inverse preconditioner for unsymmetric matrices

Sparse approximate inverse (SPAI) preconditioners are effective in accelerating iterative solutions of a large class of unsymmetric linear systems and their inherent parallelism has been widely explored. The effectiveness of SPAI relies on the assumption of the unknown true inverse admitting a sparse approximation. Furthermore, for the usual right SPAI, one must restrict the number of non-zeros...

متن کامل

Partitioning Rectangular and Structurally Unsymmetric Sparse Matrices for Parallel Processing

A common operation in scientific computing is the multiplication of a sparse, rectangular, or structurally unsymmetric matrix and a vector. In many applications the matrix-transposevector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several ...

متن کامل

Improved Symbolic and Numerical Factorization Algorithms for Unsymmetric Sparse Matrices

We present algorithms for the symbolic and numerical factorization phases in the direct solution of sparse unsymmetric systems of linear equations. We have modified a classical symbolic factorization algorithm for unsymmetric matrices to inexpensively compute minimal elimination structures. We give an efficient algorithm to compute a near-minimal data-dependency graph for unsymmetric multifront...

متن کامل

Multifrontal solution of sparse unsymmetric matrices arising from semiconductor equations

The multifrontal LU method is implemented to solve drift-diffusion models with large sparse matrices arising in the simulation and optimization of semiconductor devices. The performance of this method is compared with the LU algorithm without multifrontal scheme on different computers in the case of a realistic double heterojunction transistor. Résumé On emploie un méthode LU multifrontale pour...

متن کامل

An Unsymmetric-Pattern Multifrontal Method for Sparse LU Factorization

Sparse matrix factorization algorithms for general problems are typically characterized by irregular memory access patterns that limit their performance on parallel-vector supercomputers. For symmetric problems, methods such as the multifrontal method avoid indirect addressing in the innermost loops by using dense matrix kernels. However, no efficient LU factorization algorithm based primarily ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Mathematical Software

سال: 1999

ISSN: 0098-3500,1557-7295

DOI: 10.1145/305658.287640